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Abstract

 Climate warming is contributing to increases in wildfire activity throughout the western U.S., 

leading to potentially long-lasting shifts in vegetation. The response of forest ecosystems to wildfire is 

thus a crucial indicator of future vegetation trajectories, and these responses are contingent upon 

factors such as seed availability, interannual climate variability, average climate, and other 

components of the physical environment. To better understand variation in resilience to wildfire 

across vulnerable dry forests, we surveyed conifer seedling densities in 15 recent (1988-2010) 

wildfires and characterized temporal variation in seed cone production and seedling establishment. 

We then predicted post-fire seedling densities at a 30-m resolution within each fire perimeter using 

downscaled climate data, monthly water balance models, and maps of surviving forest cover. 

Widespread ponderosa pine (Pinus ponderosa) seed cone production occurred at least twice following 

each fire surveyed, and pulses of conifer seedling establishment coincided with years of above-

average moisture availability. Ponderosa pine and Douglas-fir (Pseudotsuga menziesii) seedling 

densities were higher on more mesic sites and adjacent to surviving trees, though there were also 

important interspecific differences, likely attributable to drought- and shade-tolerance. We estimated 

that post-fire seedling densities in 42% (for ponderosa pine) and 69% (for Douglas-fir) of the total 

burned area were below the lowest reported historical tree densities in these forests. Spatial models 

demonstrated that an absence of mature conifers (particularly in the interior of large, high-severity 

patches) limited seedling densities in many areas, but 30-year average actual evapotranspiration and 

climatic water deficit limited densities on marginal sites. A better understanding of the limitations to 

post-fire forest recovery will refine models of vegetation dynamics and will help to improve strategies 

of adaptation to a warming climate and shifting fire activity.

Key Words: Wildfire, Seed Production, Seedling Establishment, Dry Forests, Regeneration, Conifer, 

Ponderosa Pine, Douglas-fir, Climate Filtering, Fire Severity 
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Introduction

Over the past several decades, global-scale climate warming and extreme drought events have 

promoted increases in wildfire activity across a range of forest ecosystem types (Kasischke and 

Turetsky 2006, Brando et al. 2014, Singleton et al. 2018). Wildfire activity, in combination with the 

effects of warmer and drier conditions on tree regeneration processes, is increasing the potential for 

widespread forest losses (Enright et al. 2015, Stevens-Rumann et al. 2018). The rate of forest 

recovery following wildfire is a crucial parameter that controls the susceptibility of forests to type 

conversion (Tepley et al. 2018), and in dry coniferous forests of the western U.S. (i.e., lower-elevation 

forests with a dominant component of ponderosa pine [Pinus ponderosa]), early post-fire recovery 

differs drastically across biophysical gradients (Chambers et al. 2016, Rother and Veblen 2016, Kemp 

et al. 2019). Thus, forest resilience (sensu Holling 1973) to wildfire is also likely to vary across 

complex mountainous landscapes. Spatially-explicit predictions of post-fire forest recovery (e.g., 

Tepley et al. 2017, Haffey et al. 2018, Shive et al. 2018) can provide insight into relative differences 

in forest resilience across gradients in climate and fire severity.

The empirical assessment of drivers of tree regeneration (e.g., seed production, seedling 

germination, site suitability) will help to identify key bottlenecks to forest persistence in a warmer, 

drier future (Enright et al. 2015, Davis et al. 2018b). For the successful establishment of seed-obligate 

conifers (i.e., those incapable of vegetative reproduction) following wildfire, viable seed must be 

available in sites that are suitable for germination and survival. Together, these processes define the 

regeneration niche (sensu Grubb 1977), which has a tremendous influence on the distribution of 

forests. Following recent wildfires throughout the western U.S., it has been noted that seedling 

densities of non-serotinous conifers (i.e., trees without fire-adapted canopy seedbanks) are highest 

near surviving trees (Haire and McGarigal 2010, Chambers et al. 2016, Kemp et al. 2016, Tepley et 

al. 2017) due, in part, to greater seed availability. While seed dispersal is also influenced by tree 

height, seed characteristics, wind speed, and animal transport, seed availability is typically highest in 

close proximity to mature trees (McCaughey et al. 1986). This spatial component is well-documented, 

yet temporal variability in seed cone production of many conifers is poorly understood because the 

quantification of interannual variability in seed cone production requires either long-term monitoring 

or reconstruction based on persistent reproductive structures (sensu Forcella 1981). Information 
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regarding ponderosa pine seed cone production is available in portions of the species’ range 

throughout the western U.S. (e.g., Burns and Honkala 1990, Krannitz and Duralia 2004, Shepperd et 

al. 2006, Mooney et al. 2011, Keyes and Manso 2015), but strikingly little is known about seed cone 

production in post-fire landscapes. This knowledge is critical for a comprehensive examination of 

seed availability and its influence on tree regeneration.

Overstory forest cover and post-fire vegetation also have the potential to influence conifer 

establishment, growth, and survival through competition, facilitation, and microclimate modification. 

In mixed-species systems in which conifers coexist with resprouting angiosperm species, the post-fire 

cover of resprouting vegetation (shrubs and trees) typically increases with fire severity (Welch et al. 

2016). Competing vegetation can reduce the growth rates of some conifers (Tepley et al. 2017) and 

may also inhibit seedling establishment, particularly for species such as ponderosa pine that 

regenerate well on bare mineral soil (Pearson 1942, Schubert 1976). Overstory forest cover modifies 

the understory environment by altering light availability (Battaglia et al. 2002) and by moderating 

daily maximum temperatures and diurnal fluctuations (Davis et al. 2018a). These buffering effects 

have the potential to reduce the influence of climate variability on seedlings, particularly for more 

shade-tolerant tree species capable of establishing and surviving within densely-forested sites 

(Dobrowski et al. 2015). Therefore, severe wildfire can reduce the potential for conifer seedling 

establishment by removing seed sources, altering the competitive environment, and eliminating the 

microclimatic buffering effects of the canopy.

In dry forests of the western U.S., post-fire conifer seedling densities are typically greater on 

wetter sites such as north-facing slopes and higher elevations (Dodson and Root 2013, Rother and 

Veblen 2016, Tepley et al. 2017, Haffey et al. 2018, Shive et al. 2018, Kemp et al. 2019). Post-fire 

recovery in conifer forests is also influenced by multiyear periods of drought and by interannual 

climate variability. For example, recovery is less likely in fires that are followed by abnormally dry 

periods (Harvey et al. 2016, Stevens-Rumann et al. 2018, Davis et al. 2019). One plausible 

mechanism creating these patterns is that seedling establishment for some montane conifer species is 

more likely in infrequent years with above-average moisture (Savage et al. 1996, League and Veblen 

2006, Rother and Veblen 2017, Davis et al. 2019). Douglas-fir (Pseudotsuga menziesii) and 
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ponderosa pine seedling survival is also greater under cool and moist conditions (Rother et al. 2015), 

with extreme drought years of particular importance to regeneration failure (Young et al. 2019). 

An improved understanding of the potential limitations to post-fire conifer regeneration 

requires a synthetic approach that considers seed production, seedling establishment, and site 

suitability (Davis et al. 2018b). At 15 recent (1988 to 2010) fire events, we characterized annual seed 

cone production, resprouting of angiosperm trees, and conifer seedling establishment. We then 

combined these data with surveys of post-fire density for seedlings of two dominant coniferous tree 

species (Douglas-fir and ponderosa pine) and investigated the relationships between key biophysical 

factors and post-fire seedling densities across the 15 fire events. Finally, we used these data to predict 

seedling densities throughout each fire perimeter to better infer landscape-scale patterns of conifer 

forest resilience to wildfire. Specifically, we asked: 1) How do seed cone production, conifer seedling 

establishment, and angiosperm resprouting vary following each fire? 2) Which biophysical factors 

best predict stand-scale variability in post-fire conifer seedling density? 3) What percentage of each 

fire and of total burned area has recovered to meet seedling density thresholds consistent with 

historical tree densities? 4) What is the percentage of total burned area in which post-fire conifer 

seedling densities were limited by a lack of mature conifers following fire?

Methods

Study Area and Site Selection

Our study sites include 15 recent (1988-2010) wildfires that occurred in dry forests of southern 

Colorado and northern New Mexico, USA (Table 1, Fig. 1). We selected these fires as a subset of all 

large (> 404 ha) wildland fires in the southern portion (< 38.5 degrees N) of the Southern Rocky 

Mountains Ecoregion occurring from 1984-2010 (Eidenshink et al. 2007). We limited fire selection 

using the following criteria: 1) vegetation type – fires must have occurred in areas with dominant 

components of pine-oak, ponderosa pine, or dry mixed-conifer vegetation types (Rollins 2009), 2) 

accessibility – fires must have occurred on accessible public land, or on large private parcels for 

which we were permitted access, and 3) fires must have had only minimal areas of overlap with other 

fire perimeters (i.e., “reburns”). Out of the 41 wildfires meeting each of these criteria, we selected and 

were granted permission to sample in 15. Fire severity, area burned, pre-fire vegetation (Table 1), and 
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average climate varied across the fires studied. Within fire perimeters, average January minimum 

temperatures range -14.9 to -6.8 C and average July maximums range 18.1 to 30.2 C. Total annual 

precipitation ranges 351 to 1049 mm, with a pronounced dry period in early summer (June and early 

July). Late-summer monsoons (mid-July to September) vary in importance across the study area and 

account for 30-45% of average annual precipitation, with increasing monsoonal contributions to the 

south and east (1981-2010 normals from the Parameter-Elevation Regression on Independent Slopes 

Model; PRISM 2018).

Regeneration Plots and Biophysical Predictors

For field surveys of post-fire conifer recovery, densities of resprouting angiosperms, and 

biophysical factors potentially influencing post-fire vegetation trajectories, we used a nested plot 

design with 8-12 transects within each fire perimeter and 3-6 plots along each transect. To identify the 

start of each transect, we first identified contiguous areas of low-, moderate-, and high-severity fire 

using thematic maps of dNBR (differenced Normalized Burn Ratio)-derived fire severity from the 

Monitoring Trends in Burn Severity project (Eidenshink et al. 2007). To locate each transect within a 

relatively homogenous area, we selected potential sites as contiguous patches of each severity class 

that exceeded 300 m in diameter. We excluded any areas with reforestation activities from site 

selection. Next, we created an accessibility layer in which we identified areas within each fire that 

were between 100 and 500 m of a system road or major trail. Finally, we identified 3-4 patches of 

each fire severity class that intersected the accessibility layer and spanned the geographic extent of the 

fire. We randomly located transect starts within each selected patch. Along each transect, we 

established plots with a 60-m systematic spacing and random offsets (10 m at a random azimuth). We 

allowed the number of transects and plots to vary within each fire perimeter based on the number of 

suitable patches identified, with the goal of establishing a total of 40 plots per fire (total n = 555).

Following Harvey et al. (2016), we used a variable-sized plot design to survey post-fire 

densities of conifer seedlings and resprouting angiosperms. Plot sizes were species-specific and based 

on initial surveys of abundance in each plot. For tree species with fewer than 25 post-fire stems within 

the full 15-m radius circular plot (707 m2), we surveyed all stems. If more than 25 stems of a species 

were present in the full plot, sampling areas were reduced to the following: 25-100 stems - 120 m2, 
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101-500 stems - 30 m2, > 500 stems - 10 m2. We defined seedlings as all conifers establishing 

following fire (as determined from bud scars [sensu Urza and Sibold 2013] and ring counts from 

increment cores), but we did not survey first-year germinants because of the high mortality rates for 

these individuals. Because seedling ages derived from bud scars can underestimate true seedling ages 

(Hankin et al. 2018), we may have slightly overestimated post-fire seedling densities in some low- 

and moderate-severity plots. However, these biases are greater for older and larger seedlings, for 

which we also used increment cores to verify ages. 

To develop field-derived estimates of fire severity and to quantify pre- and post-fire forest 

structure, we recorded the species and diameter at breast height (1.37 m above ground level; DBH) of 

all live and dead overstory trees within each plot that likely pre-dated each fire. We determined pre-

fire status of trees using stem diameter (> 10 cm DBH for conifers and > 5 cm for angiosperms; Table 

2), level of decay, and char characteristics. We then estimated the relative dominance of ponderosa 

pine, Douglas-fir, and Gambel oak (Quercus gambelii) within each fire as the percentage of total pre-

fire basal area in regeneration plots that was attributed to each species. We used branch morphology, 

wood characteristics, and the color and texture of remaining bark to identify the species of each dead 

individual. At the plot-level, we calculated the total pre-fire basal area of all species as a potential 

indicator of site productivity. We calculated field-derived fire severity as the percentage of total pre-

fire basal area killed on each plot during the fire. At each plot center, we recorded the distance to the 

closest surviving mature conifer using a laser rangefinder. If these distances exceeded 500 m (the 

distance limitation of the instrument) or if trees were not visible from plot center, we measured the 

distance from plot center to the closest mature conifer using 2014 or 2015 aerial imagery (USFS 

2015). Lastly, we quantified ground cover on each plot using four 1-m2 quadrats and noted any 

evidence of grazing or browse damage by cattle or other ungulates (Table 2).

To quantify 30-year average and 3-year post-fire climate in each regeneration plot and within 

each fire perimeter, we performed a statistical downscaling (following Nalder and Wein 1998) of 30-

year monthly averages of precipitation and temperature (i.e., 30-year normals), as well as monthly 

data from the fire year and each of the three years following the fire (PRISM 2018). Using these data, 

we modeled actual evapotranspiration (AET) and climatic water deficit (CWD) using a modified 

Thornthwaite-type method (Appendix S1; Lutz et al. 2010). We summed monthly values to calculate 
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accumulated annual totals (by calendar year) of AET and CWD in each 30-m cell. We then developed 

predictors of 1) 30-year annual average AET and CWD, 2) 3-year average post-fire AET and CWD, 

and 3) the difference between 3-year average post-fire values and 30-year averages (Table 2). While 

CWD provides an estimate of the intensity of drought stress because it estimates unmet atmospheric 

moisture demand, AET is an indicator of site productivity because high values are indicative of sites 

with high availability of both moisture and energy (Dobrowski et al. 2015). 

As an alternative to field-derived distances to mature conifers that could be characterized 

throughout each fire perimeter, we quantified post-fire canopy cover of mature conifers using image 

processing (following Rodman et al. 2019b) and classification of 1-m aerial imagery from the 

National Agriculture Imagery Progam (USFS 2015; Appendix S2). Overall accuracy of this 

classification was 90.2% at the level of a 1-m pixel (Appendix S2: Table S1). We aggregated the 1-m 

thematic maps to a 30-m resolution by extracting the percent cover of mature conifers in circular areas 

of different sizes (30-600 m radii in 30-m increments) surrounding each regeneration plot to assess 

the influences of post-fire canopy cover at multiple spatial scales.

Seed Cone Production

To characterize interannual variability in ponderosa pine seed cone production, we used the 

cone abscission scar method (Forcella 1981, Redmond et al. 2016). We performed these surveys 

within eight of the 15 fires, a subset that we selected to span the geographic and climatic ranges of our 

sites. Within each of these eight fires, we reconstructed seed cone production in at least two stands 

(27 stands total) and 4-6 trees/stand (154 total trees). Most stands were in close proximity (< 1 km) to 

post-fire regeneration plots, either in surviving stands within fire perimeters or in adjacent unburned 

areas. Following Redmond et al. (2016), we reconstructed seed cone production on 6-8 branches per 

tree by recording cone scars and remaining cones and conelets at each annual bud scar from 2003-

2017. We counted the total number of cone bearing branches on each tree to scale our estimates of 

cones per branch to cones per tree. For individual trees, we defined seed cone years as years in which 

at least 25 cones were produced. Within fires, years of widespread seed cone production were defined 

as years in which at least 50% of trees produced more than 25 cones. To quantify synchrony in cone 

production, we calculated pairwise Spearman correlation coefficients (of seed cone counts by year) 
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between all trees surveyed for seed cone production (following Mooney et al. 2011). To determine 

scales of synchrony, we then calculated the mean pairwise correlations of seed cone production for all 

trees (across fires), for trees within each fire (within fires), and for trees within individual stands. 

Conifer Seedling Establishment and Angiosperm Resprouting

To describe temporal variability in conifer establishment and angiosperm resprouting 

following each fire, we collected up to two destructive samples of post-fire stems in each regeneration 

plot (total n = 696 successfully dated). If present, Douglas-fir, ponderosa pine, or lodgepole pine 

seedlings were excavated below soil level. If these coniferous species were absent, we harvested 

angiosperm (i.e., aspen [Populus tremuloides], Gambel oak) stems. We followed the lab protocols of 

Telewski (1993) and Rother and Veblen (2017) to identify the establishment year of conifers. From 

each conifer seedling, we cut and dated four cross-sections at varying stem heights. We then 

identified the establishment year as the innermost ring in the cross-section at, or immediately above, 

the root-shoot boundary. While time consuming, these methods are a notable improvement over node 

counts for the quantification of temporal trends in establishment (Hankin et al. 2018). For angiosperm 

stems, we determined the year of stem initiation from a single cross section near ground level. This 

likely approximates annual resolution given the rapid growth of these stems in the first few years after 

stem initiation. 

We identified annual pulses of establishment for ponderosa pine and Douglas-fir at the 

regional-scale. First, we developed a single time series of seedlings dated to each year (1988-2015) by 

aggregating annual counts across fires. Next, we used a modified version of CharAnalysis (sensu 

Andrus et al. 2018) to detect pulses in this time series. CharAnalysis is an algorithm that identifies 

significant local outliers in time series data using a combination of non-linear detrending and 

Gaussian mixture models (Higuera et al. 2010, Tepley and Veblen 2015). For parameters in 

CharAnalysis, we used a five-year window width and a 90th percentile probability threshold. 

Following pulse detection, we qualitatively compared pulse years with interannual climate variables 

believed to influence tree establishment. Because moisture during the growing season may benefit 

conifer seedling establishment (Rother and Veblen 2017), we calculated accumulated climatic water 

deficit (CWD; Appendix S1) for April-September of each year (1981-2015) within each fire 
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perimeter. We then calculated the mean value of April-September CWD from all grid cells within the 

15 fire perimeters, and standardized yearly values through time to the series-wide mean and standard 

deviation (hereafter “z-scores”). Similarly, El Niño events (i.e., the warm phase of the El Niño 

Southern Oscillation [ENSO]) have been associated with episodic conifer establishment in the 

Southern Rocky Mountains (League and Veblen 2006), perhaps because of increases in winter 

precipitation during these years (Kurtzman and Scanlon 2007). Therefore, we obtained a Multivariate 

ENSO Index (MEI; Wolter and Timlin 2011) for the two month period of January-February 

(following League and Veblen 2006).

Seedling Density – Statistical Modeling

To develop statistical models of post-fire seedling densities for ponderosa pine and Douglas-

fir, we used generalized linear mixed models (GLMMs; sensu Bolker et al. 2009) in the “glmmTMB” 

package (Brooks et al. 2017) in R (R Core Team 2018). Potential predictors in each GLMM included 

factors related to 30-year average climate, 3-year post-fire climate, fire severity, topography/terrain, 

herbivory, recovery of other tree species, pre-fire forest structure, and post-fire groundcover (Table 

2). All spatially-extensive predictors were obtained or created at a 30-m resolution. We converted all 

continuous predictors to z-scores prior to model fitting to facilitate direct comparison of standardized 

model coefficients and to improve model stability. For GLMMs, we included data from the 555 

regeneration plots across the 15 surveyed fires. Because of the hierarchical structure of data 

collection, we used nested random intercepts (transect within fire) to account for spatial dependence 

of plot data within each transect and across each fire. Semivariograms of model residuals indicated 

very little spatial dependence with this random effect structure (nugget:sill ratio near 1; Bivand et al. 

2013). To account for differences in sampling area among plots (due to the variable-sized subplots 

used in this study), we also included an offset term of “log(subplot area)” for each species on each 

plot (Zuur et al. 2009). Following the development of initial zero-inflated GLMMs with a Poisson 

error structure, we used simulation-based tests of model residuals in the “DHARMa” package (Hartig 

2018) in R to examine issues of dispersion. Our initial models were underdispersed and we therefore 

used a generalized Poisson error structure – a preferred distribution in these cases (Hilbe 2014). 
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We performed variable selection for our GLMMs of post-fire seedling density using an 

information-theoretic approach (Burnham and Anderson 2002). First, we fit initial models by 

developing GLMMs that included all potential predictors (Table 2) with the exception of those in 

highly correlated groups (e.g., groundcover, post-fire canopy cover of mature conifers in different 

radii). We then independently added predictors from each correlated group and used AIC (Akaike 

Information Criterion) to identify specific predictors in each group with the greatest explanatory 

power. After including these predictors, we then performed variable selection for final GLMMs by 

minimizing AIC while also balancing parsimony - in the case of two models with relatively similar 

AIC (i.e., AIC < 2), we selected the simpler model. To assess final model fit, we used a k-fold cross-

validation procedure in which each GLMM was fit with the majority of the data, while plots from a 

single transect were withheld as the test set. We repeated this process with each transect (143 folds). 

We were interested in the ability of models to predict seedling densities that exceeded different 

density thresholds (see Seedling Density—Spatial Modeling). Therefore, we used balanced 

classification accuracy, a metric that evenly weights sensitivity and specificity, to quantify agreement 

between observed and predicted values in cross-validation. 

Seedling Density – Spatial Modeling

We developed spatially-explicit predictions of ponderosa pine and Douglas-fir seedling 

densities at a 30-m resolution (hereafter “grid cells”) within each of the 15 fire perimeters with an 

additional set of GLMMs, using only predictors that were characterized across the entire area of each 

fire (Table 2). This was done by conducting GLMM analyses similar to those described in Seedling 

Density – Statistical Modeling, but excluding variables of groundcover, pre-fire forest structure, local 

vegetation characteristics, and field-derived distances to mature conifers (Table 2). These GLMMs 

were then used to predict post-fire seedling densities in each grid cell throughout each fire (hereafter 

“spatial models”). Because Douglas-fir was only a minor component (< 10% basal area) of pre-fire 

basal area in five fires (Table 1), we excluded these fires from summaries of spatial model results for 

this species. We present results of spatial models for each fire, the total fire area (summed across all 

fires), and the total high-severity area (38.7% of total fire area). To identify these high-severity areas 

(i.e., grid cells with total canopy mortality), we used field-derived fire severity (percent basal area 
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mortality) to train a classification using Landsat-derived RdNBR (relative differenced normalized 

burn ratio; Miller et al. 2009). Balanced accuracy of this classification was 84.4%.

From the spatial model predictions, we quantified the percentage of each fire, of total fire area, 

and of total high-severity area that exceeded density thresholds of 25 ponderosa pine seedlings ha-1 

and 10 Douglas-fir seedlings ha-1. These values correspond to some of the lowest reported stand 

densities in historical reconstructions of ponderosa pine and dry mixed-conifer forests throughout 

southern Colorado and the Southwest (Reynolds et al. 2013, Rodman et al. 2017). In order to identify 

sites most at risk of fire-facilitated conversion we used these thresholds as a broad/general approach 

to resilience. We acknowledge that the use of these universally low density thresholds as a means of 

assessing recovery from wildfire ignores the inherent variability in pre-fire density and species 

composition within and among fires. We tested the sensitivity of model results and classification 

accuracies to different tree density thresholds; the 25 and 10 seedlings ha-1 thresholds, for ponderosa 

pine and Douglas-fir, respectively, yielded the highest balanced accuracies of those tested (Appendix 

S3: Table S1, Appendix S3: Table S2). To describe potential drivers of variability among fires in 

these models, we calculated Spearman rank correlation coefficients between the percentage of each 

fire exceeding density thresholds and fire-level variables of: 1) percentage of area within each fire 

perimeter with total canopy mortality, 2) percentage of pre-fire basal area belonging to ponderosa 

pine or Douglas-fir, and 3) mean 30-year CWD within each fire perimeter. 

Finally, to identify areas in which post-fire seedling densities of Douglas-fir and ponderosa 

pine were limited by the proximity to live conifers, we used the fitted GLMMs to predict seedling 

densities throughout each fire with observed climate surfaces (e.g., AET and CWD) and theoretically 

abundant canopy cover of mature conifers. We interpreted grid cells to be climatically suitable for 

seedlings but limited by the availability of surviving conifers if they were initially below the 25 and 

10 seedlings ha-1 density thresholds with the observed post-fire canopy cover of mature conifers, but 

exceeded density thresholds given abundant canopy cover. Limitations to recovery in these grid cells 

likely reflect the combined influences of surviving forest cover on seed availability and on 

microclimatic buffering. We interpreted grid cells remaining below the 25 and 10 seedlings ha-1 

density thresholds in both spatial models to have been limited by climatic predictors (e.g., AET, 

CWD) and/or fire-level random effects. 
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Results

Q1) How do seed cone production, conifer seedling establishment, and angiosperm resprouting vary 

following each fire?

While the abundance of ponderosa pine seed cone production varied through time and among 

the fires surveyed, we estimate that ponderosa pine seed was widely available in most areas with 

surviving mature trees (Fig. 2). From 2003-2017 (the range of years that could be reliably quantified 

using the cone abscission scar method), 74% of all surveyed trees had at least two seed cone years and 

40% had at least five seed cone years (Fig. 2a). Each fire surveyed using the cone abscission scar 

method (n = 8) had multiple years of widespread seed cone availability following fire occurrence (Fig. 

2b). These events occurred, on average, every 2-8 years. Seed cone production was asynchronous 

among fires (mean pairwise Spearman correlation;  = 0.09), though regionally important years 

occurred in 2006, 2009, 2012, 2015, and 2017 (Fig. 2c). Seed cone production was relatively 

synchronous within fires (mean  = 0.25, range = 0.08-0.40) and most synchronous within individual 

stands (mean  = 0.38, range = 0.02-0.64).

Lodgepole pine (which often have serotinous cones), as well as Gambel oak and aspen (which 

can resprout from established root systems following wildfire), showed abundant establishment 

immediately following individual fire events (Fig. 3). Specifically, 96% of lodgepole pine samples 

and 54% of oak and aspen stems were dated within three years of fire occurrence. Stems of 

resprouting angiosperms continued to initiate for many years after some fires (Fig. 3). Only 23% of 

ponderosa pine and Douglas-fir establishment occurred within three years of fire occurrence. 

Regional pulses of ponderosa pine and Douglas-fire seedling establishment, as identified through 

CharAnalysis, occurred in 1995, 1998, 2007, 2010, and 2014 (Fig. 4a). Three of the five pulses (1995, 

1998, and 2007) took place during years with below-average CWD during the growing season (Fig. 

4b), and four of the five pulses (1995, 1998, 2007, and 2010) were associated with El Niño events 

(i.e., a positive MEI in January and February; Fig. 4c). No strong temporal associations were evident 

between ponderosa pine seed cone production and seedling establishment at broad scales (Fig. 4d).

Q2) Which biophysical factors best predict stand-scale variability in post-fire conifer seedling 

density?
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Final GLMMs of post-fire ponderosa pine seedling density – created using all field-derived 

and spatially-extensive variables as potential predictors – included 30-year average AET, 30-year 

average CWD, field-derived distances to mature conifers, percent basal area mortality, post-fire 

vegetation characteristics, and pre-fire basal area (Fig. 5a). Low 30-year average CWD and high 30-

year average AET, together indicative of productive areas with abundant moisture, were associated 

with higher seedling desnities (Fig. 5a). Interestingly, 30-year averages of CWD and AET were better 

predictors of ponderosa pine seedling density than were 3-year post-fire AET and CWD. Including 3-

year post-fire climate variables did not improve predictive accuracy. Plots that were both adjacent to 

surviving mature conifers and burned at higher severity (i.e., greater percent basal area mortality) had 

higher densities of ponderosa pine, as indicated by the significant interaction between these two 

variables (Fig. 5a). Grass cover and Gambel oak sprouting densities were negatively related to 

ponderosa pine density, while pre-fire basal area and post-fire Douglas-fir seedling density were 

positively related to ponderosa pine density (Fig. 5a). The Douglas-fir model with both field-derived 

and spatially-extensive variables did not improve upon the model including only spatially-extensive 

variables, thus we only present the latter model for Douglas-fir.

GLMMs developed for spatially-explicit models of ponderosa pine and Douglas-fir seedling 

densities were relatively similar to one another, including both 30-year average CWD and post-fire 

canopy cover of mature conifers as top predictors, but also had some important differences (Fig. 5b, 

5c; Fig. 6). The ponderosa pine model included 30-year average CWD, 30-year average AET, and 

post-fire canopy cover of mature conifers, with 30-year CWD being the most important predictor. 

Low 30-year average CWD and high 30-year average AET were associated with higher ponderosa 

pine densities (Fig. 5b, Fig. 6b, Fig. 6c). The Douglas-fir model included only 30-year average CWD 

and post-fire canopy cover of mature conifers. Canopy cover was more important than was 30-year 

average CWD for Douglas-fir (Fig. 5c). The most notable difference between the two species was the 

relationship with post-fire canopy cover of mature conifers, which we assessed at a range of 

neighborhood sizes (30-600 m radii in 30-m increments). Ponderosa pine densities were highest in 

areas with intermediate (46%) canopy cover and the most influential neighborhood size was relatively 

broad: a 240-m radius (Fig. 5b, Fig. 6a). A non-linear term for canopy cover led to a slightly 

improved model fit (AIC = 1.8) and a more ecologically realistic response given the shade-intolerant 
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nature of ponderosa pine. In contrast, Douglas-fir densities were highest in dense stands (100% cover) 

and a localized 60-m neighborhood size was most influential (Fig. 5c, Fig 6d), consistent with 

overstory microclimatic buffering and the greater shade tolerance of this species. 

While the GLMM of ponderosa pine density including all field-derived and spatially-extensive 

predictors had an improved fit when compared to the GLMM developed for spatially-explicit models 

(AIC = 11.8), the differences in classification accuracy from cross-validation were relatively minor 

(71.8% balanced accuracy for the full model vs. 70.6% for the spatial model). For Douglas-fir, the 

GLMM used to inform spatial models had a balanced classification accuracy of 77.3%. Zero-inflation 

components of final GLMMs included only intercept terms and are not presented here.

Q3) What percentage of each fire and of total burned area has recovered to meet seedling density 

thresholds consistent with historical tree densities?

Spatially-explicit predictions of post-fire seedling densities for each species indicated that 

42% and 69% of total fire area had seedling densities below 25 ponderosa pine and 10 Douglas-fir 

seedlings ha-1, respectively (Fig. 7, Fig. 8). In the portions of these fires with total canopy mortality 

(high-severity), predicted densities were lower. We estimated that 57% of the total high-severity area 

did not exceed 25 ponderosa pine seedlings ha-1 and 79% of the total high-severity area did not 

exceed 10 Douglas-fir seedlings ha-1 (Appendix S3: Table S1, Appendix S3: Table S2). 

Recovery also varied substantially among fires. For example, the Montoya Fire had 0% of 

total fire area exceeding 25 ponderosa pine and 10 Douglas-fir seedlings ha-1, while the Saw Fire had 

100% (ponderosa pine) and 98% (Douglas-fir) of fire area above these same density thresholds (Fig. 

7, Fig. 8). The percentage of fire area exceeding density thresholds was positively correlated with pre-

fire basal area for each species ( = 0.55 for ponderosa pine,  = 0.38 for Douglas-fir) and negatively 

correlated with the percentage of fire area with total canopy mortality ( = -0.50 for ponderosa pine,  

= -0.52 for Douglas-fir). There were weaker relationships with mean 30-year CWD within fire 

perimeters ( = -0.15 for ponderosa pine,  = -0.25 for Douglas-fir). The percentage of fire area with 

total canopy mortality was not related to 30-year CWD ( = -0.01), and the 15 fires spanned broad 

ranges in both predictors.

kyle
Cross-Out



This article is protected by copyright. All rights reserved

Q4) What is the percentage of total burned area in which post-fire conifer seedling densities were 

limited by a lack of mature conifers following fire?

The drivers of limited conifer regeneration varied by species, within fire perimeters, and 

among fires. By substituting a theoretically-abundant canopy cover into our final models, we 

determined that 25% of total fire area was predicted to have less than 25 ponderosa pine seedings ha-1 

due to a lack of mature conifers following fire (as measured through canopy cover in 1-m image 

classification; Appendix S3: Table S1). An additional 16% of fire area was predicted to be below 25 

seedlings ha-1 (even with abundant canopy cover) due to 30-year average AET, 30-year average 

CWD, and random effects of fire (Appendix S3: Table S1). In contrast, Douglas-fir may be more 

strongly influenced by the canopy cover of mature conifers. For Douglas-fir, 68% of the total fire area 

was limited (below 10 seedlings ha-1) by a lack of mature conifers (Appendix S3: Table S2).

Discussion 

Limited recovery of seed-obligate conifers has been widely documented following recent 

wildfires throughout the western U.S. (e.g., Harvey et al. 2016, Rother and Veblen 2016, Shive et al. 

2018, Stevens-Rumann et al. 2018, Kemp et al. 2019), yet the spatial and temporal variability in 

factors limiting post-fire forest recovery are still poorly understood. Building on the existing 

knowledge of recovery processes in dry forests, we note four key findings. First, our results indicate 

that seed cone production was not a major limitation to post-fire recovery of ponderosa pine. Second, 

five peak years of seedling establishment coincided with above-average moisture availability. Third, 

variability in post-fire conifer seedling density related to gradients in climate and fire severity, and 

seedling densities were highest on mesic sites and near surviving conifers. Fourth, Douglas-fir and 

ponderosa pine post-fire seedling densities were relatively low across a substantial percentage of the 

total burned area. Together, the initial filter of seed availability (a combination of seed production and 

proximity to mature conifers) and the secondary filter of climate limited conifer forest recovery across 

15 recent wildfires in southern Colorado and northern New Mexico, USA.

Spatial and Temporal Limitations to Seed Availability and Other Effects of Live Trees
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To date, little research has focused on the role of seed production in post-fire recovery of dry 

forests in the western U.S. In the present study, we found that the limited establishment of ponderosa 

pine following wildfires was not due to a lack of years of abundant seed cone production (i.e. mast 

years). Previous studies of seed cone production in ponderosa pine indicate that mast years may occur 

every 2-6 years (Maguire 1956, Krannitz and Duralia 2004, Shepperd et al. 2006), similar to our 

estimates of 2-8 years within fires. These findings have two important implications. First, the time 

interval between the initial disturbance and the time of our surveys was long enough to allow for at 

least one widespread ponderosa pine seed cone year in each fire. Second, given the relatively frequent 

seed cone production observed in this study, the patterns of surviving trees are a useful proxy for 

spatial variability in ponderosa pine seed availability throughout the landscape. Still, temporal 

variation in seed availability and alignment with climate conditions suitable for germination (sensu 

Savage et al. 1996, 2013, Petrie et al. 2017) is a poorly understood component of post-fire recovery 

needing additional research.

Fire severity, measured here using a combination of variables including field-derived distance 

to mature conifers, percent basal area mortality, post-fire canopy cover of mature conifers in aerial 

imagery, and satellite-derived RdNBR, was one of the factors best predicting post-fire ponderosa pine 

and Douglas-fir seedling densities. Fire severity controls the availability of live conifers throughout 

the landscape, which then drives spatial patterns of seed-availability. Surviving trees also modify 

temperature (Davis et al. 2018a), relative humidity (Paritsis et al. 2015), and light availability in the 

understory (Battaglia et al. 2002), thereby influencing seedling survival and resource availability in 

harsh post-fire environments. While canopy moderation may benefit both ponderosa pine and 

Douglas-fir, Douglas-fir is better adapted to benefit from microclimatic buffering (sensu Dobrowski 

et al. 2015) given its greater ability to tolerate the shaded understories of densely forested areas 

(Bigelow et al. 2011). For example, the areas predicted to have the highest densities of ponderosa pine 

seedlings were under intermediate levels of canopy cover (i.e., 46% in a 240-m radius). In contrast, 

Douglas-fir had higher seedling densities in dense stands (i.e., 100% cover in a 60-m radius). At a fine 

scale, we found that plots with high fire severity (as indicated by high percent basal area mortality), 

but in close-proximity to seed trees had high post-fire ponderosa pine seedling densities, likely due to 

fire-induced modifications of the seedbed and increased light availability on these sites (thus 
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benefitting shade-intolerant ponderosa pine). Localized patches of high-severity fire may drive the 

abundant, aggregated establishment of ponderosa pine due to the presence of an adjacent seed source 

as well as bare mineral soil, available light, and increases in growing space (Sánchez Meador et al. 

2009, Larson and Churchill 2012). Fire severity, influencing seed availability and conditions in the 

understory environment, is one of the most important factors limiting the recovery of seed-obligate 

conifers in post-fire environments.

Climate and Site Suitability as Constraints on Post-Fire Regeneration

Average climate (described by 30-year CWD and AET) was another strong predictor of post-

fire densities for both ponderosa pine and Douglas-fir. Consistent with the findings of other studies 

(e.g., Dodson and Root 2013, Chambers et al. 2016, Kemp et al. 2016, Rother and Veblen 2016), we 

found that moisture-limited sites at low elevations and on southerly aspects typically had low conifer 

seedling densities, even in areas adjacent to a seed source. Many previous studies have utilized 

individual climate variables such as precipitation and temperature or terrain variables such as aspect 

and elevation to explain variability in post-fire conifer density. Water balance metrics such as CWD 

and AET provide a more useful alternative because they effectively combine the influence of climate, 

topography, and soils, and are functionally tied to the environmental conditions experienced by plants 

(Stephenson 1998, Dilts et al. 2015). When calculated at fine spatial resolutions that mirror the 

operational scales of post-fire recovery processes (as done in this study), AET and CWD are useful 

and complementary predictors of post-fire recovery in semi-arid landscapes and are helpful indicators 

of susceptibility to fire-driven conversions in vegetation.

Interestingly, 3-year post-fire CWD and AET had little predictive power in our seedling 

density models, yet post-fire climate has been noted as an influential driver of post-fire recovery in 

other studies (Harvey et al. 2016, Stevens-Rumann et al. 2018, Davis et al. 2019). A recent synthesis 

spanning much of the Rocky Mountains noted the post-fire climate was most predictive of forest 

recovery during cooler, wetter periods (Stevens-Rumann et al. 2018). Given that many of our fires 

occurred in the early-mid 2000s, a warm and dry period in which post-fire conditions may have been 

more universally unfavorable for seedlings, this is one possible explanation for differences between 

our findings and those of previous studies in regard to average post-fire conditions. In addition, we 
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found that only 23% of ponderosa pine and Douglas-fir establishment occurred within three years of 

fire occurrence; interannual climate variability after the initial three-year post-fire period also plays an 

important role in post-fire vegetation trajectories. 

At an annual resolution, extreme drought years influence longer-term forest trajectories, likely 

by increasing seedling mortality (Young et al. 2019), while wetter years lead to pulses of conifer 

establishment (Rother and Veblen 2017, Davis et al. 2019). Short-term (e.g., 3-5 years) averages of 

post-fire climate may mask the importance of these extreme years. In the present study, the 1995, 

1998, 2007, 2010, and 2014 establishment pulses coincided with below-average CWD during the 

April-September growing season or with the warm (i.e. El Niño) phase of ENSO (which is associated 

with wet winters in the study area; Kurtzman and Scanlon 2007). Though these two components of 

interannual climate variability are generally related, they are not perfectly correlated (Fig. 4), and thus 

they represent slightly different seasonal effects that could influence establishment. For example, 

years with a positive MEI (El Niño conditions) may have above-average spring snowpack, yet may 

still accumulate CWD during the growing season due to above-average summer temperatures. Similar 

effects of interannual and sub-annual climatic variability are now well-documented in conifer forests 

throughout the southern Rocky Mountains and Southwest (Savage et al. 1996, League and Veblen 

2006, Rother and Veblen 2017, Andrus et al. 2018, Davis et al. 2019). As such, demographic models 

that tie interannual climate variability to specific components of the conifer reproductive cycle are 

more informative than 3-5 year post-fire climatic averages (e.g., Feddema et al. 2013, Savage et al. 

2013, Petrie et al. 2017, Davis et al. 2019). The consideration of longer time periods, both to assess 

the adequacy of recovery (sensu Haire and McGarigal 2010) and to identify potential windows for 

seedling establishment, is warranted in dry forests of the Southern Rocky Mountains.

Additional factors that helped to predict post-fire seedling densities included seedbed 

characteristics, post-fire recovery of other tree species, and pre-fire forest density. For example, our 

results indicated that grass cover and Gambel oak density both had negative relationships with 

ponderosa pine density at the stand-scale. Bunch grasses (e.g., Festuca arizonica) may compete with 

ponderosa seedlings for soil moisture (Pearson 1942), potentially limiting seedling densities (Flathers 

et al. 2016). In contrast to our findings, previous studies have noted that ponderosa pine may have 

weak (Owen et al. 2017) or even strong (Ziegler et al. 2017) positive spatial associations with 
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resprouting angiosperm trees in post-fire environments. Gambel oak is believed to facilitate the 

establishment of another southwestern pine species (i.e., Pinus edulis; Floyd 1982) through 

microclimatic buffering and perhaps by attracting avian dispersers (such as corvids). Therefore, our 

finding of a negative relationship between Gambel oak density and ponderosa pine density may also 

reflect the occupancy of different site types rather than competitive or inhibitory interactions between 

these species. We also noted that high pre-fire basal area and post-fire Douglas-fir seedling density 

were positively related to ponderosa seedling density, perhaps indicative of wetter sites with better 

growing conditions. Post-fire seedling density is locally variable, reflecting variability in the seedbed, 

local vegetation characteristics, and growing conditions (as influenced by moisture availability and 

topoclimate).

Landscape-Scale Variability in Resilience to Fire

Spatial variability in conifer seedling density was effectively predicted throughout each fire 

using statistical models developed from field data and spatially-extensive datasets. Using these 

predictions, we determined that ponderosa pine and Douglas-fir regeneration was below the lowest 

reported historical tree densities in large percentages (42% and 69%, respectively) of the total area 

burned throughout 15 recent wildfires in southern Colorado and northern New Mexico, USA. 

Importantly, there was also pronounced variability in forest recovery among fires. Individual fire 

events ranged widely in post-fire recovery (with both species ranging from 0-100% across fires), 

which makes broad generalizations about causal mechanisms difficult. Still, much of this limited 

regeneration could be attributed to a lack of post-fire canopy cover of mature conifers and the 

unfavorable climate in portions of the surveyed sites (specifically 30-year average AET and CWD). In 

addition, recovery among fires was strongly related to differences in pre-fire species dominance, 

indicative of important legacy effects. Our spatial models provided an effective means of scaling 

stand-level observations to extensive post-fire landscapes (Tepley et al. 2017, Haffey et al. 2018, 

Shive et al. 2018), thus permitting broader inferences about vulnerability to post-fire vegetation type 

conversion.

Projections of future shifts from forest to non-forest vegetation types are inherently uncertain 

due to unknown future climatic variability as well as uncertainties about rates and specific drivers of 
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vegetation change. Because our surveys were performed in relatively recent wildfires (1988-2010), it 

may be too early to suggest that transitions to non-forest vegetation types are permanent (Baker 

2018). Still, the spatial variability in predicted densities across our study area indicates that some site 

types (e.g., xeric sites and those in the interior of high-severity patches) are more vulnerable to 

vegetation type conversions than others. Forest response to wildfire is often presented as a simplistic 

binary outcome of resilient versus non-resilient based on observations over periods of one to a few 

decades, yet a more nuanced approach to forest resilience considers rates of recovery, which can then 

create gradients of “relative resilience” across the landscape (Tepley et al. 2017, 2018, Shive et al. 

2018). Given the importance of canopy cover and 30-year average CWD in predicting densities of 

both ponderosa pine and Douglas-fir, results from the current study imply that under continued 

warming and altered fire activity, some forested areas in the Southern Rocky Mountains are likely to 

undergo fire-driven conversions to non-forested vegetation (Parks et al. 2019).

Adaptation and Management Implications

Continued climate warming will increase the vulnerability of many low-elevation forests to 

conversion to non-forest vegetation types, and this presents complex challenges to land managers. 

Adequately addressing these challenges requires consideration of societal values and forest ecosystem 

services, as well as the best possible technical understanding of the potential for success of a variety 

of possible management interventions (Higuera et al. 2019). Potential management options include 

actions that attempt to forestall change through enhanced ecosystem resistance to fire effects, 

interventions aimed at improving post-fire resilience, and actions such as assisted migration aimed at 

facilitating ecosystem transformation to systems consistent with a changing climate (Millar et al. 

2007, Halofsky et al. 2014). All management interventions have considerable risk due to uncertainties 

in predicting the rate and pattern of future climate change and the complexity of climate impacts on 

ecosystem dynamics. Therefore, a diverse range of approaches to adaptation and management should 

be considered (Millar et al. 2007, Baker 2018). Currently, reforestation is one of the most common 

management responses to large severe fires in the western U.S. (North et al. 2019), and the 

effectiveness of post-fire planting can vary widely (e.g., 0-70% survival in fires throughout Arizona 

and New Mexico; Ouzts et al. 2015). The likelihood of successful reforestation can benefit from the 

type of site-specific research on regeneration processes presented in the current study. If reforestation A
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of recently-burned areas remains an important goal, relatively cool/wet sites should be prioritized first 

because seedling survival in these areas is likely to be greatest, now and into the future. Within these 

wetter areas, planting units should be limited to locations where available seed sources are most 

distant (Stevens-Rumann and Morgan 2019). The statistical analyses and spatial models presented 

here help to locate these types of sites in heterogenous burned landscapes by identifying areas that are 

climatically suitable, but in which recovery is limited by the proximity to live conifers. Our results are 

also important in informing discussions among stakeholders of the likelihood of future changes in the 

extent of forest cover, the probable changes in forest ecosystem services, and the costs and benefits of 

a range of adaptation strategies.

Conclusion

The factors limiting forest recovery to wildfire vary by species and across gradients in fire 

severity and climate. Because seed cone production was relatively frequent within each fire, the 

proximity to surviving conifers (as controlled by fire severity) is a reliable proxy for seed availability 

and is one of the most important factors driving post-fire recovery. Consistent with other recent 

studies (e.g., Dobrowski et al. 2015, Tepley et al. 2017), 30-year averages of actual evapotranspiration 

and climatic water deficit helped to quantify the climatic constraints on seedlings. In general, post-fire 

seedling densities of ponderosa pine and Douglas-fir were highest on wetter sites and near surviving 

trees. Anthropogenic climate change has led to increases in wildfire area burned throughout much of 

the western U.S. (Abatzoglou and Williams 2016) and these trends are likely to continue (Liu et al. 

2013, Kitzberger et al. 2017), highlighting the importance of understanding the patterns of ecosystem 

recovery following these events. Post-fire recovery in dry forests is constrained by the initial filter of 

seed availability and the secondary filter of climatic suitability, together controlling the susceptibility 

to fire-driven forest losses.
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Table 1: Descriptions of the 15 surveyed fires in southern Colorado and northern New Mexico, USA. 

“Area” is the areal extent of mapped fire perimeters from the Monitoring Trends in Burn Severity 

program (Eidenshink et al. 2007). “High Severity” is the percentage of each fire that burned at high 

severity (total canopy mortality) based on satellite-derived burn severity classification with field 

validation. Pre-fire species composition, derived from field inventories of live and dead trees, is given 

for the three most prevalent species across sites (Douglas-fir, Gambel oak, and ponderosa pine) and 

represents the percentage of pre-fire basal area belonging to a given species in each fire. 

Fire Summary Information

Pre-Fire Species Composition 

(% BA) Plots

Fire Name

Area 

(ha)

High 

Severity 

(%) Year

Elevation 

Range (m)

Douglas-

Fir

Gambel 

Oak

Ponderosa 

Pine n

Borrego 5,211 21 2002 2163-3111 11 < 1 72 40

H12 1,778 10 2010 2497-2964 18 2 77 40

Hondo 3,339 69 1996 2261-3605 11 < 1 59 31

Lakes 1,742 37 2002 2290-2673 43 < 1 39 40

Mason 4,461 70 2005 1861-2494 14 1 78 37

Mato Vega 5,312 61 2006 2568-3235 45 0 18 36

Missionary 

Ridge 27,891 34 2002 2010-3560 32 < 1 23 33

Montoya 1,666 45 2002 2437-2870 0 13 42 37

Pine Canyon 1,656 21 2005 2214-2645 0 3 70 36

Ponil Complex 36,051 32 2002 2027-2842 10 < 1 86 33

Saw 1,259 0 1988 2262-2485 12 10 82 38

Spring 9,730 49 2002 2316-2867 29 1 60 45

Viveash 9,093 63 2000 2418-3539 49 < 1 29 29

West Fork 2,200 15 2008 2196-2569 4 1 60 40

York 1,314 9 2001 2389-2800 6 3 85 40

All Fires

Total 

Area: 

112,703

% of 

Total: 39

Range: 

1988-

2010

Range: 

1861-3605

% of 

Total: 23

% of 

Total:  

2

% of 

Total:  56

Total: 

555
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Table 2: Descriptions of predictor variables included in statistical models of post-fire seedling density 

for ponderosa pine and Douglas-fir across 15 fires in southern Colorado and northern New Mexico, 

USA. Expected relationships of each variable with ponderosa pine (“PIPO”) and Douglas-fir 

(“PSME”) densities are shown with (+) or (-). Spatially-extensive variables that could be used to 

inform spatial models of seedling densities within fire perimeters (“Spatial Model”) are denoted with 

(x).

Category Variable 

Name

Description PIPO PSME Spatial 

Model

Average 

Climate

30-Year 

Average AET

Average actual evapotranspiration (AET; 

evaporative loss constrained by moisture 

availability) calculated at a monthly timestep 

from downscaled 30-year normals (1981-

2010) and summed by calendar year.

+ + or - x

30-Year 

Average 

CWD 

Average climatic water deficit (CWD; the 

difference between potential and actual 

evapotranspiration) calculated at a monthly 

timestep from downscaled 30-year normals 

(1981-2010) and summed by calendar year.

- - x

Post-Fire

Climate

3-Year Post-

Fire AET

Average AET calculated from downscaled 

monthly data in the first three years after a 

fire. The mean of the three annual values.

+ + or - x

3-Year Post-

Fire CWD

Average CWD calculated from downscaled 

monthly data in the first three years after a 

fire. The mean of the three annual values.

- - x

Post-Fire 

AET

Deviation

Difference between 3-year post-fire AET and 

30-year average AET.

+ + or - x

Post-Fire 

CWD 

Deviation

Difference between 3-year post-fire CWD and 

30-year average CWD.

- - x

Fire Severity Canopy 

Cover of 

Mature 

The percentage of total surface area 

surrounding each field plot classified as 

mature conifer cover in 1-m post-fire imagery. 

+ or - + x
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Conifers Calculated in 20 different neighborhood sizes 

(i.e., circular areas with radii of 30-600 m in 

30-m increments).

Distance to 

Mature 

Conifer

Field-derived distance (m) from plot-center to 

nearest surviving conifer.

- -

Percent BA 

Mortality

Field-derived percentage of pre-fire basal area 

killed during event.

+ or - -

RdNBR Landsat-derived fire severity index using pre- 

and post-fire imagery.

+ or - - x

Topography/

Terrain

Topographic 

Position 

Index

Index describing relative topographic position 

of each 30-m cell. High values are associated 

with ridgetops and low values are associated 

with valley bottoms.

+ or - - x

Landform 

Classification

Categorical variable combining topographic 

position, aspect, and soils at 30-m resolution. 

From Theobald et al. (2015)

+ on 

interme

diate 

slopes

+ on 

cool/wet 

slopes

x

Herbivory Grazing/ 

Browsing

Binary variable (presence/absence) of cattle 

grazing or ungulate browse damage on each 

plot.

- -

Post-Fire 

Recovery of 

Other Tree 

Species

Douglas-Fir 

Seedling 

Density

Density (seedlings ha-1) of post-fire Douglas-

fir seedlings. Used only as predictor of 

ponderosa pine density.

+ N/A

Gambel Oak 

Sprout 

Density

Density (stems ha-1) of post-fire Gambel oak. + or - +

Other Conifer 

Seedling 

Density

Density (stems ha-1) of post-fire conifers of 

other species (i.e., fir, spruce, lodgepole pine, 

pinyon pine, and juniper).

- -

Pre-Fire 

Forest 

Structure

Pre-Fire 

Basal Area

Combined basal area of live and dead 

overstory trees of all species in a given plot.

+ +

Groundcover Bare Ground Percent cover of bare ground in 1-m2 quadrats. + -
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/Seedbed

Percent 

Coarse Wood

Percent cover of coarse wood in 1-m2 

quadrats.

+ +

Percent Forb Percent cover of forbs in 1-m2 quadrats. + +

Percent Grass Percent cover of graminoids in 1-m2 quadrats. - + or -

Percent Litter Percent cover of litter in 1-m2 quadrats. - +

Percent Rock Percent cover of rock in 1-m2 quadrats. - -

Percent Shrub Percent cover of low (< 1.4 m in height) 

shrubs in 1-m2 quadrats.

+ or - +
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Figure Captions

Fig. 1. Map of the study area in southern Colorado and northern New Mexico, USA, showing the 15 

wildfires surveyed for post-fire forest recovery. Green shading shows the distribution of forests based 

on the 1992 National Land Cover Dataset (NLCD), which preceded most of the wildfires surveyed.

Fig. 2. A summary of ponderosa pine seed cone production at (a) the tree level and (b, c) the fire level 

in eight surveyed fires in southern Colorado and northern New Mexico, USA. Tree-level production 

gives (a) the percentage of trees (across all sites; n = 154) exceeding different numbers of individual 

seed years (2003-2017), where seed years were defined as individual years with at least 25 seed cones 

produced. Fire-level production gives (b) the percentage (bar heights) and number of post-fire years 

(between fire occurrence and the time of surveys; numbers above each bar) with widespread seed 

cone production (at least 50% of surveyed trees recording seed years), as well as (c) the estimated 

annual cone production tree-1 within each fire. Bar colors and fire names in (b) match lines in (c). 

Cone production prior to 2003 could not be reliably quantified using the cone abscission scar method.

Fig. 3. Temporal patterns of conifer seedling establishment (for Douglas-fir, ponderosa pine, and 

lodgepole pine) and the timing of resprouting (for aspen and Gambel oak) across each of 15 surveyed 

fires in southern Colorado and northern New Mexico, USA. Counts are derived from destructive 

samples collected throughout each fire and dated with annual precision. Years of fire occurrence are 

shown with a triangle and dashed line. The total number of seedlings and stems aged in each fire is 

given by n. Information on pre-fire species composition and burn severity in each fire are provided in 

Table 1.

Fig. 4. A summary of conifer establishment, angiosperm resprouting, interannual climate variability 

(1988-2015), and ponderosa pine seed cone production across 15 surveyed fires in southern Colorado 

and northern New Mexico, USA. Destructively-sampled seedlings (conifers) and stems (angiosperms) 

were collected throughout each fire and (a) dated with annual precision. Bar colors correspond to each 

of the five sampled species, and bar heights correspond to the number of samples dated to each year. 
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Triangles and vertical dashed lines show significant pulses of ponderosa pine and Douglas-fir 

establishment (1995, 1998, 2007, 2010, and 2014) based on CharAnalysis – a pulse detection 

algorithm that identifies local outliers. Interannual climate variability was characterized with (b) 

CWD (climatic water deficit) during the growing season (April-September) and (c) the multivariate El 

Niño Southern Oscillation index (MEI). Lastly, (d) ponderosa pine establishment across all sites 

(green bars) is overlaid with the mean annual seed cone production tree-1 (in a subset of eight fires) in 

the year prior to seedling establishment (hollow circles).

Fig. 5. Standardized coefficients and significance levels for each of the predictors included in 

generalized linear mixed models predicting postfire (a, b) ponderosa pine and (c) Douglas-fir seedling 

density. Error bars are  one standard error of the coefficient estimate. Models were developed for 

ponderosa pine seedling density from (a) all potential predictors (both field-derived and the spatially-

extensive variables), (b) ponderosa pine seedling density from spatially-extensive predictors only (for 

later use in spatial modeling) and (c) Douglas-fir seedling density from spatially-extensive predictors. 

We do not present a model for Douglas-fir seedling density using field-based predictors because these 

did not improve model fit. Coefficients are for the conditional models only and do not include zero-

inflation terms or random intercept coefficients. Orthogonal polynomial terms (non-linear predictors) 

are given with the variable name preceded by “poly” and variable interactions are given by linking 

two variable names with “x”.

Fig. 6. Results of generalized linear mixed models that were used to predict post-fire seedling 

densities of ponderosa pine and Douglas-fir across each of the surveyed fires in southern Colorado 

and northern New Mexico, USA. Predicted values (solid lines) represent the marginal effects of each 

predictor when assuming optimal values for the other predictors and mean values of random effects. 

Dotted lines are  one standard error of prediction. Variables include (a, d) canopy cover - the percent 

surface area of mature conifers within a circular radius, (b, e) 30-year average CWD (climatic water 

deficit), and (c) 30-year average AET (actual evapotranspiration) – measures of unmet evaporative 

demand and evaporation constrained by moisture availability, respectively. Variation among fires is 
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Fig. 5. Standardized coefficients and significance levels for each of the predictors included in generalized linear mixed models predicting postfire (a, b) ponderosa pine and (c) Douglas-fir seedling densities. Error bars are  one standard error of the coefficient estimate. Models were developed from (a) all potential predictors (both field-derived and the spatially-extensive variables) and (b, c) spatially-extensive predictors only (for later use in spatial modeling). We do not present a model for Douglas-fir seedling density using field-based predictors because these did not improve model fit. Coefficients are for the conditional models only and zero-inflation terms or random intercept coefficients are not shown. Orthogonal polynomial terms (non-linear predictors) are given with the variable name preceded by “poly” and variable interactions are given by linking two variable names with “x”.
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shown with (f) random intercept coefficients for each species, where colors indicate positive (blue) or 

negative (red) deviations from the mean value across all sites.

Fig 7. Predicted ponderosa pine seedling densities throughout each surveyed fire in southern Colorado 

and northern New Mexico based on the landscape GLMMs. The percentage values in each panel give 

the percentage of fire area exceeding a density threshold of 25 seedlings ha-1, which corresponds to 

some of the lowest historically reported densities for this species in ponderosa-pine dominated forests 

of the Southern Rocky Mountains and Southwest (Rodman et al. 2017). Blue areas in each map 

exceed this threshold while red areas are below this threshold. Note that cartographic scales differ 

among panels.

Fig. 8. Predicted Douglas-fir seedling densities throughout each surveyed fire in southern Colorado 

and northern New Mexico based on the landscape GLMMs. The percentage values in each panel give 

the percentage of fire area exceeding a density threshold of 10 seedlings ha-1, which corresponds to 

some of the lowest historically reported densities for this species in dry mixed-conifer forests of the 

Southern Rocky Mountains and Southwest (Rodman et al. 2017). Blue areas in each map exceed this 

threshold while red areas are below this threshold. Fire names followed by (*) are those in which 

Douglas-fir represented less than 10% of pre-fire basal area. These fires were excluded from 

summaries of spatial models. Note that cartographic scales differ among panels.
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GLMMs using only spatially-extensive predictors.
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GLMMs using only spatially-extensive predictors
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